(Newton's) Shell theorem
Isaac Newton proved the shell theorem[1] and stated that:
A spherically symmetric body affects external objects gravitationally as though all of its mass were concentrated at a point at its center.
If the body is a spherically symmetric shell (i.e., a hollow ball), no net gravitational force is exerted by the shell on any object inside, regardless of the object's location within the shell.
These results were important to Newton's analysis of planetary motion; they are not immediately obvious, but they can be proven with calculus. (Alternatively, Gauss's law for gravity offers a much simpler way to prove the same results.)
In addition to gravity, the shell theorem can also be used to describe the electric field generated by a static spherically symmetric charge density, or similarly for any other phenomenon that follows an inverse square law. The derivations below focus on gravity, but the results can easily be generalized to the electrostatic force
Propositions 70 and 71 consider the force acting on a particle from a hollow sphere with an infinitesimally thin surface, whose mass density is constant over the surface. The force on the particle from a small area of the surface of the sphere is proportional to the mass of the area and inversely as the square of its distance from the particle. The first proposition considers the case when the particle is inside the sphere, the second when it is outside. The use of infinitesimals and limiting processes in geometrical constructions are simple and elegant and avoid the need for any integrations. They well illustrate Newton's method of proving many of the propositions in the Principia.
His proof of Propositions 70 is trivial. In the following, it is considered in slightly greater detail than Newton provides.
The proof of Proposition 71 is more historically significant. It forms the first part of his proof that the gravitational force of a solid sphere acting on a particle outside it is inversely proportional to the square of its distance from the center of the sphere, provided the density at any point inside the sphere is a function only of its distance from the center of the sphere.
Although the following are completely faithful to Newton's proofs, very minor changes have been made to attempt to make them clearer.
Force on a point inside a hollow sphere Edit
Attraction interior sphere
Fig. 2 is a cross-section of the hollow sphere through the center, S and an arbitrary point, P, inside the sphere. Through P draw two lines IL and HK such that the angle KPL is very small. JM is the line through P that bisects that angle. From the geometry of circles, the triangles IPH and KPL are similar. The lines KH and IL are rotated about the axis JM to form 2 cones that intersect the sphere in 2 closed curves. In Fig. 1 the sphere is seen from a distance along the line PE and is assumed transparent so both curves can be seen.
Post a Comment